
When Is the Best Time to Look for a Job for Women? 
-- A time series analysis 

 
1. Introduction 

 
In this project, our goal is to identify a model best fitting the time series monthly unemployment 
data for female aged 16-19 years from 1948-19811. The data is a summary of monthly 
employment survey of 60,000 households, conducted by the U.S. Bureau of Labor. People are 
classified as unemployed if they did not work during the survey week, or if they make efforts to 
find a job in the previous few weeks, or if they were available for work during the survey week. 
Figure 1 shows the rising of unemployment rate of 408 months. The moving average smoothing 
line emphasizes the upward trend in the series throughout these 30 years. The seasonal pattern of 
adult female unemployment shows twin peaks across the year. It increases at the beginning of the 
year, then declines through the first six months, and rises again and declines after Christmas.2 In 
order to analyze the unemployment rate, we first transformed the data to stabilize the series. 
Then, we built several time series regression models to fit the data and then evaluated the models 
by 𝑅", Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC).  

 
Figure 1.  Female Aged 16-19 Unemployment from 1948 to 1981 

 
2. Material and Methods 

 
To understand the unemployment data further, exploratory data analysis was conducted. 
 
Figure 1 shows the unemployment series, say x$, exhibits heteroscedasticity. To stabilize the 
variance over the series, log-transformation or Box-Cox transformation is useful. In this project, 
we used log-transformation  y$ = logx$, which also improved the approximation to normality. 
 
As shown in Figure 2, y$ is not stationary either. To make it stationary, detrending or 
differencing could have been used. In this project, we wanted to fit several regression models 
and compare them. Therefore, detrending was used since it was easier to interpret for the 
unemployment data. The time has been centralized to avoid drastic intercepts. Here we supposed 
the model was of the form (notice all following t was centered): 
                                                               	y$ = 	β, +	β.t +	w$                                                     (1)                                                  



Next we built several linear regression models based on the results of ACF and PACF plots of 
the residuals of the proposed model (1). The specific experiments were regression with lagged 
variables and regression with indicator variables. We compared these models by computing 
model selection criteria including R", AIC and BIC. We also conducted F test in ANOVA 
analysis to evaluate the full model and reduced models. 
 
3. Result 
3.1 Data Preprocessing 
 
Before log-transformation, the variance of the first half of data is 13877.32 and that of the second 
half data is 43372.48. After transformation, the variances become 0.2044 and 0.1349. The 
variability over the length of the data becomes more stable. 

 
Figure 2. Log Female Aged 16-19 Unemployment from 1948 to 1981 

 
From the time series (Figure 2) and the ACF plot (Figure 3), we know that the data exists a 
particular uptrend and is highly autocorrelated. Furthermore, some lags of PACF values are 
large. Hence, we need to do detrending.  
 

 
Figure 3. ACF and PACF of Unemployment Data 

 
3.2 Model Candidates  
 

• Model 1: 



Obviously, the number of unemployment female increases as time goes on. So it is reasonable to 
regress y$ on time:  

Model 1:     y$ = 	5.8511 + 0.0586𝑡  
 
The independent variable t is significant from t test and 𝑅" is 0.7897, which means 78.97% 
variation of y$ can be explained by t. In order to know whether there are other features that may 
influence y$, we plotted the ACF and PACF of residuals.  
 

 
Figure 4. ACF and PACF of Model 1’s Residuals 

 
Figure 4 shows residuals are not white noise. It is necessary to add more features to explain y$. 
The ACF and PACF values of lag1 and lag12 are both significant, so it is possible that 𝑦:;. and 
𝑦:;." are correlated with  y$, which may be helpful for explaining the variation of  y$.		Therefore, 
we separately added 𝑦:;.,  𝑦:;.",  𝑦:;. and 𝑦:;." to model 1.  
 

• Model 2: 
In model 2, we added 𝑦:;. to model 1.  
 

Model 2:      y$ = 2.3198 + 0.0232t + 0.6039𝑦:;.  
 

The results of this model 2 shows that t and 𝑦:;.  are both significant from t test and 𝑅" is 
0.8633, larger than that in model 1.  And 𝑦:;.  is also significant from F test.  Therefore, it is 
necessary to include 𝑦:;. in model 2. 
 

• Model 3: 
In model 3, we added 𝑦:;." to model 1. 
 

Model 3:      y$ = 1.5370 + 0.0148𝑡 + 0.7439𝑦:;." 
 
The result of model 3 shows that t and 𝑦:;." are both significant from t test and 𝑅" is 0.9082, 
larger than that in model1. And 𝑦:;." is also significant from F test. Therefore, it is necessary to 
include 𝑦:;."	in model3. 
 



• Model 4: 
In model 4, we added both 𝑦:;. and 𝑦:;." to model 1. 
 

Model 4:      y$ = 0.4280 + 0.0037𝑡 + 0.3338𝑦:;. + 0.5986𝑦:;."  
 
The result of model 4 shows that 𝑦:;. and 𝑦:;." are both significant from t test and 𝑅" is 0.9274, 
larger than that in model 1.  And 𝑦:;. and 𝑦:;." are also significant from F test. Therefore, it is 
necessary to include both 𝑦:;. and 𝑦:;." in model4. 
 
3.3 Structural Model 
 
Every year has 12 months' records of unemployment rate data. So this satisfies the basic 
structural model’s condition, which consists of three parts: trend component, month component 
and irregular component. And then we have 12 indicator variables. The model is: 
 

𝑦: = 	𝛽𝑡 +	𝛼.𝑄. 𝑡 +	𝛼.𝑄. 𝑡 +	𝛼"𝑄" 𝑡 + ⋯+	𝛼."𝑄." 𝑡 + 𝑤: 
 
We had fitted this model in R. From the output given by R, we can see all the variables are 
significant. And the 𝑅" is 0.9989. It is higher than the previous model, and performs best at 
interpreting the variance of data.  
 

3.4 Model Selection 
 
We have built 5 different models, 4 regression models with different variables and one structural 
model. The following table summarizes the important criteria from each model which are 
important in choosing the models. 
 

Table 1. Criteria of Candidate Models 
Model 𝑅" AIC BIC 

Model 1 0.7897 -1.4161 -1.1387 
Model 2 0.8633 -8.7980 -1.8408 
Model 3 0.9082 -2.2661 -2.2271 
Model 4 0.9274 -2.4894 -2.4406 
Model 5 0.9989 -2.2106 -2.0729 

 
𝑅"	can demonstrate how much variance the model explains. But a higher 𝑅"	alone does not 
guarantee a better model. Some model has over-fitting issues. So we computed corresponding 
AIC, BIC values to help us select. After considering all three values for each model, we decided 
to use model4 as our final model. 
 
4. Conclusion and Discussion 

 
4.1 Final Model 
 



Based on our results, we can express our final model as: 
 

𝑦: = 0.4280 + 0.0037t + 0.3338𝑦:;. + 0.5986𝑦:;." 
 
And we can check the residuals by plotting the histogram: 

 
Figure 5. Histogram of Model 4’s Residuals 

 
The residuals are normally distributed, which is consistent with our model’s white noise 
assumption. So we can trust our final model.  
 
4.2 Discussion of the Final Model 

 
There are two lagged variables in the final model, one being the value measured at time (t-1), 
and another at time (t-12). So the time series value is associated with the value from a month 
ago and the value from 12 months ago. It makes sense, since these two variables represent short 
term effect and long term effect from the human resources market respectively, which is related 
to the unemployment rate. 
 
Based on our analysis on the past unemployment data above, we concluded that it is important 
for women to prepare early when it comes to job hunting, and avoiding unemployment peak in 
summer might be a good choice. To predict the unemployment data in a certain month, we can 
take last month and this month of last year’s data into consideration. 
 
 
 
 
 
 

 

 



Appendix 
 

# Import data 

unemployment = read.csv("monthly-us-female-1619-years-une.csv", 
                       stringsAsFactors = FALSE) 
unemployment = unemployment[-409, ] 
colnames(unemployment) = c("month", "unemployment") 
 
# Transform data into time series data 
ue = ts(unemployment$unemployment, frequency = 12, start = c(1948, 1)) 
# Plot time series data and moving average line 
wue = c(0.5, rep(1,11), 0.5)/12 
unemploy = filter(ue, sides = 2, filter = wue) 
plot(ue,main = "United States of America Monthly Employment Figures for Females Aged 16-
19 Years from 1948-1981", ylab = "The number of females in employment (in thousands)") 
lines(unemploy, lwd = 2, col = 4) 
# Check the two half parts of data's variance 
var(ue[1:204]) 
var(ue[205:408]) 
# Do the log-transformation for data 
log_ue = log(ue) 
# Plot time series data and moving average line 
wlog_ue = c(0.5, rep(1,11), 0.5)/12 
log_unemploy = filter(log_ue, sides = 2, filter = wlog_ue) 
plot(log_ue,main = "United States of America Monthly Employment log-transformed Figures for 
Females Aged 16-19 Years from 1948-1981", ylab = "The log-transformed number of females in 
employment (in thousands)") 
lines(log_unemploy, lwd = 2, col = 4) 
# Check the two half parts of data's variance 
var(log_ue[1:204]) 
var(log_ue[205:408]) 
# Plot the acf and pacf of the data 
par(mfrow = c(2,1)) 
acf(ue, main = "ACF of ue") 
pacf(ue, main = "PACF of ue") 
par(mfrow = c(1,1)) 
times = time(log_ue) 
mean(times)  #1965 
# Centralize time 
times_central = times - mean(times) 
# Fit the first model that contains only t as variable 
model1 = lm(log_ue ~ times_central) 
summary(model1) 
R1 = summary(model1)$r.squared 
# Calculate the AIC and BIC 



AIC1 = AIC(model1) / length(log_ue) - log(2 * pi) 
BIC1 = BIC(model1) / length(log_ue) - log(2 * pi) 
res_model1 = residuals(model1) 
# Plot acf of the residual in model1 
par(mfrow = c(2,1)) 
acf(res_model1, main = "ACF of residuals of model1") 
pacf(res_model1, main = "PACF of residuals of model1") 
par(mfrow = c(1,1)) 
# Add 1 time lag variable 
data_lag1_12 = ts.intersect(log_ue, times_central, lag1 = lag(log_ue, -1), lag12 = lag(log_ue, -
12)) 
# Fit the second model that contains time t and value at time (t-1) as variable 
model2 = lm(log_ue ~ times_central + lag1,data = data_lag1_12) 
summary(model2) 
R2 = summary(model2)$r.squared 
# calculate the AIC and BIC 
AIC2 = AIC(model2) / length(log_ue) - log(2 * pi) 
BIC2 = BIC(model2) / length(log_ue) - log(2 * pi) 
# F-test 
anova(model2) 
# Fit the third model that contains time t and value at time (t-12) as variable 
model3 = lm(log_ue ~ times_central + lag12,data = data_lag1_12) 
summary(model3) 
R3 = summary(model3)$r.squared 
# calculate the AIC and BIC 
AIC3 = AIC(model3) / length(log_ue) - log(2 * pi) 
BIC3 = BIC(model3) / length(log_ue) - log(2 * pi) 
# F-test 
anova(model3) 
# Fit the third model that contains time t, value at time (t-1) and value at time (t-12) as variable 
model4 = lm(log_ue ~ times_central + lag1 + lag12, data = data_lag1_12) 
summary(model4) 
R4 = summary(model4)$r.squared 
# calculate the AIC and BIC 
AIC4 = AIC(model4) / length(log_ue) - log(2 * pi) 
BIC4 = BIC(model4) / length(log_ue) - log(2 * pi) 
# F-test 
anova(model4) 
# make monthly factors 
M = factor(cycle(ue) ) 
# fit a structural model 
model5 = lm(log(ue)~0 + times_central + M, na.action=NULL) 
R5 = summary(model5)$r.squared 
# calculate the AIC and BIC 
AIC5 = AIC(model5) / length(log_ue) - log(2 * pi) 
BIC5 = BIC(model5) / length(log_ue) - log(2 * pi) 



# F-test 
anova(model5) 
data.frame(R1,R2,R3,R4,R5) 
data.frame(AIC1,AIC2,AIC3,AIC4,AIC5) 
data.frame(BIC1,BIC2,BIC3,BIC4,BIC5) 
# Check the residual of model4 from the histogram to see whether it is satisfy the white noise 
condition 
res_model4 = residuals(model4) 
hist(res_model4, xlab = "residuals", main = "Histogram of residuals of model4") 
 
 
 
 
 
 
 
 
 

	


